GENETICS

Investigation on Genetic Heterogeneity of α-Subunit of the Epithelial Sodium Channel in Rat Renal Cortex

N. S. Logvinenko, Y. E. Herbeck, and L. N. Ivanova

Translated from *Byulleten' Eksperimental'noi Biologii i Meditsiny*, Vol. 151, No. 6, pp. 655-658, June, 2011 Original article submitted February 2, 2010

Genotypic variability of α ENaC mRNA in adult rat kidney caused by deletion at the 3'-end of α -subunit DNA was studied by real-time PCR using specific probes with a fluorescent dye (TaqMan). It was found that mRNA deletion forms (a and b), products of alternative splicing of α ENaC gene, are absent in the cortex of adult rat kidney.

Key Words: kidney; epithelial sodium channel; intracellular sodium

Epithelial sodium channel (ENaC) is the main transporter protein involved in regulated sodium reabsorption in the distal nephron segment. ENaC consists of α -, β -, and γ -subunits (2:1:1 ratio) surrounding the channel pore conducting sodium ions [3]. The causes of species- and tissue-specific variability of sodium channel properties attract much recent attention [5,7]. This attention can be explained by specific features of nucleotide sequences of DNA encoding sodium channel subunits. Deletions and untranslated sequences determine the existence of several mRNA forms for each subunit isoform, which modulates the properties of sodium channel [7,8]. Such diversity was not observed in cell cultures, because standard cDNA containing no untranslated sequences or deletions characteristic of native DNA are used for evaluation of the expression of ENaC subunits [9]. ENaC α-subunit contributes most to the heterogeneity of the channel properties. It is known that N-terminal of human αENaC contains a large untranslated DNA sequence determining a reading frame shift and production of sodium channel

Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia. *Address for correspondence:* ninlo@bionet.nsc.ru. N. S. Logvinenko

molecules of different activity [2,7-9]. On the other hand, deletion detected at the 3'-flanking region of the α -subunit DNA leads to alternative splicing [4] and their appearance of deletional α -subunit mRNA (a and b) forms of the epithelial sodium channel ($\alpha ENaC$) in addition to its wild type.

Here we studied the effect of deletion in the 3'-flanking region of α -subunit ENaC DNA on the ratio of wild and additional deletional mRNA forms (a and b) of this subunit in rat renal cortex.

MATERIALS AND METHODS

Renal cortex of adult male Wistar rats was used in the experiments. To assess genotypic diversity of αENaC mRNA, real-time PCR was performed using specific probes with fluorescent dye (TaqMan).

RNA from rat renal cortex was isolated using QIAGEN kit in accordance with manufacturer's instructions after preliminary freezing of the tissue.

For the design of oligonucleotide primers and probes, $\alpha ENaC$ gene sequences were analyzed for wild-type (wt) and two deletion forms (a and b), products of alternative splicing of $\alpha ENaC$ (Fig. 1) [4]. Primer se-

lection criteria for reverse-transcription PCR (RT-PCR) analysis were the specific amplification of each form of $\alpha ENaC$ (wt, a, and b) with appropriate primer pair: $\alpha ENaC$ _upper_PCR/ $\alpha ENaC$ _wt_lower_PCR, $\alpha ENaC$ _upper_PCR/ $\alpha ENaC$ _a_lower_PCR, $\alpha ENaC$ _upper_PCR/ $\alpha ENaC$ _b lower_PCR (Table 1).

Primer selection criteria for real-time PCR were specific amplification of each form of $\alpha ENaC$, wt, a, and b with a common primer pair were: $\alpha ENaC$ _upper/ $\alpha ENaC$ _lower (Table 1), and the length of accumulating amplicons (<250 b.p.). The probes were designed in such a way as to discriminate between the three

αENaC_wt	1	ATACACAGCAGGTGTGCATTCACTCCTGCTTCCAGGAGAACATGATCAAGAAGTGTGGCT	60
αENaC_a	1		60
αENaC_b	1		60
αENaC_wt	61	5'-AAGCCCAAGGGAGTTGAGTT-3' αENaC_upper GTGCCTACATCTTCTACCCTAAGCCCAAGGGAGTTGAGTTCTGTGACTACCGAAAGCAGA	120
αENaC_a	61		120
αENaC_b	61		120
αENaC_wt	121	GCTCCTGGGGCTATTGCTATTATAAACTGCAGGGCGCCTTCTCCTTGGACAGCCTGGGCT	180
αENaC_a	121		157
αENaC_b	121		128
αENaC_wt	181	GTTTCTCCAAGTGTCGGAAGCCTTGTAGTGTGATCAACTACAAACTCTCTGCCGGCTACT	240
αENaC_a	158		217
αENaC_b	129		161
αENaC_wt	241	$3'-AACCTAGAAGCTCTACGACAG-5' \ \alpha ENaC_1o$ CACGGTGGCCATCTGTGAAGTCCCAGGATTGGATCTTCGAGATGCTGTCCTTGCAGAACA	300
αENaC_a	218		277
αENaC_b	162		221

Fig. 1. Nucleotide sequence of wild-type α ENaC gene (α ENaC_wt) and its two alternatively spliced deletional forms (α ENaC_a ν α ENaC_b). Identical nucleotides in the sequences relative to wild-type sequence (α ENaC_wt) are indicated by dots while deletions are shown by dashes. Figures on the left and right of the nucleotide sequence indicate the position of nucleotides in the analyzed DNA segment. Sequences of oligonucleotide primers α ENaC_upper and α ENaC_lower are italicized. Gray letters show sequences complementary to hybridization probes α ENaC_wt_probe, α ENaC_a_probe, and α ENaC_b_probe for fluorescence detection of wild-type α ENaC DNA (α ENaC_wt) and two deletional forms (α ENaC_a and α ENaC_b), respectively.

TABLE 1. Oligonucleotide Primers and Hybridization Probes Used in RT-PCR and Real-Time PCR

Primer/probe name	Nucleotide sequence of primer/probe
αENaC_upper	5'-AAGCCCAAGGGAGTTGAGTT-3'
α ENaC_lower	5'-GACAGCATCTCGAAGATCCAA-3'
α ENaC_wt_zond	5'-FAM-CGCCCTGCAGTTTATAATAGCAATAGC-BHQ1-3'
α ENaC_a_zond	5'-FAM-AGAAGGCGCCCCAGGAGC-BHQ1-3'
α ENaC_b_zond	5'-FAM-TAGTTGGTCACACCCAGGAGCTCTG-BHQ1-3'
αENaC_upper_PCR	5'-CTGCTTCCAGGAGAACATGAT-3'
α ENaC_wt_lower_PCR	5'-AGTTTATAATAGCAATAGCCCCAG-3'
α ENaC_a_lower_PCR	5'-GAAGGCGCCCCAGG-3'
αENaC_b_lower_PCR	5'-TTGTAGTTGGTCACACCCAGG-3'
GAPDH_upper	5'-AAGGCTGTGGGCAAGGTC-3'
GAPDH_lower	5'-AGGTTTCTCCAGGCGGC-3'
GAPDH_zond	5'-Cy5-CCATGCCAGTGAGCTTCCCGTT-BHQ3-3'
Random6	5'-NNNNN-3'

forms of $\alpha ENaC$, wt, a, and b: $\alpha ENaC_wt_primer$, $\alpha ENaC_a_primer$, $\alpha ENaC_b_primer$ (Table 1). To this end, alignment of DNA sequences for three $\alpha ENaC$ gene splicing products (wt, a and b) was performed (Fig. 1). For deletions $\alpha ENaCa$ and $\alpha ENaCb$, probes were designed for real-time PCR and oligonucleotide primers for RT-PCR enabling strictly specific identification of the three forms of $\alpha ENaC$: wt, a, and b. In RT-PCR, one of the primers was common to all three forms and the second primer in the pair was strictly specific for each form. In real-time PCR, the pair of primers was common to all three forms, and the probe was strictly specific for each variant of $\alpha ENaC$.

For quantitative analysis of the expression of three α ENaC forms (wt, a, and b) by real-time PCR, primers and a probe for GAPDH gene with constant expression were calculated. Oligonucleotide primers and probes were synthesized by Syntol (Table 1).

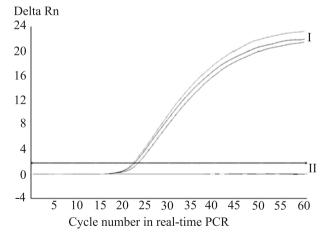
Reverse transcription was performed in 20 μ l of Sensiscript Reverse Transcriptase Kit (QIA-GEN). The reaction mixture contained 1×RT Buffer, 500 μ M dNTP, 10 mM Random6 primer (Table 1), 1.0 U Sensiscript Reverse Transcriptase, and 5 μ l RNA solution. The mixture was incubated for 60 min at 37°C. The resultant cDNA was used in real-time RT-PCR analysis.

RT-PCR analysis was performed in 50 µl of One-Step RT-PCR Kit (QIAGEN). The reaction mixture contained 1×QIAGEN OneStep RT-PCR Buffer, 400 µM dNTP, 600 nM primers, 1.0 U QIAGEN OneStep RT-PCR Enzyme Mix, and 5 µl RNA solution. Amplification was carried out as follows: 30 min at 50°C; 15 min at 95°C; then 30 cycles: 30 sec at 94°C, 30 sec at 50°C, 1 min at 72°C; final stage: 10 min at 72°C.

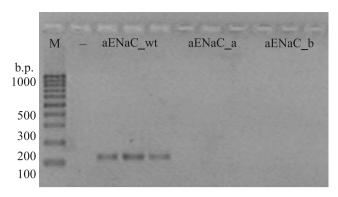
Real-time PCR with the excision of 5'-terminal tags (TaqMan system) was performed in 25 µl using Applied Biosystems 7500 Real-Time PCR System. The reaction mixture contained 1×TaqMan Buffer A, 200 µM dNTP, 3 mM MgCl₂, 600 nM primers, 300 nM hybridization probe, 0.5 U AmpliTaq Gold DNA polymerase, and 1 µl cDNA solution. PCR with the measurement of fluorescence intensity at the annealing stage was carried out by the protocol: 2 min at 95°C, then 38 cycles: 15 sec at 95°C and 1 min at 58°C. All reactions were preformed in three repetitions.

Primers and a probe for GAPDH gene were used as the control in real-time PCR (Table 1).

RESULTS


In previous studies on rats, two deletion forms (a and b) of $\alpha ENaC$, alternative splicing products, were identified; in rat kidney $\alpha ENaC_a$ predominated [4]. In order to quantify the contribution of these deletion forms to functional diversity of sodium channel properties

in rat kidney, we assessed heterogeneity of $\alpha ENaC$ mRNA determined by the presence of deletions in the 3'-end of the α -subunit DNA by real-time PCR.


Figure 2 shows the dependence of fluorescence intensity on the number real-time PCR cycle. A positive signal of specific expression was observed only for probe αENaC wt. Probes for deletional forms αENaC a and α ENaC b mRNA yielded no fluorescent signal, which indicates the absence of alternative splicing products of αENaC in the renal cortex of adult rats. This result contradicted the data [4], so we carried out an additional check for the absence of deletional forms of αENaC RNA. We repeated the experiment many times with different concentration of the probe (from 100 to 900 nM). However, no positive fluorescence signal for probe αENaC a or αENaC b was obtained. At the same time, primers and probe for GAPDH gene in real-time PCR gave positive signal with cDNA of adult rat renal cortex (data not shown).

As an independent experiment, we performed RT-PCR-analysis using one common primer and specific primers for $\alpha ENaC_wt$, $\alpha ENaC_a$ and $\alpha ENaC_b$ relatively (Fig. 3). Indeed, only the pair of primers specific for $\alpha ENaC_wt$ yielded a PCR product (length 123 b.p.). This experiment was also repeated several times with primer concentration from 200 to 900 nM. Primer annealing temperature was changed from 45°C to 55°C, however, no PCR product for primer pairs specific for $\alpha ENaC_a$ or $\alpha ENaC_b$ was obtained at this stage of our study.

These findings attest to the absence of deletional forms (a and b) of $\alpha ENaC$ gene in the renal cortex of adult Wistar rats. The mechanism providing mRNA

Fig. 2. Dependence of fluorescence intensity on the number of real-time PCR cycles. Data were obtained on Applied Biosystems 7500 Real-Time PCR System using oligonucleotide primers designed for the region of gene $\alpha ENaC$ and three probes: $\alpha ENaC$ _wt, $\alpha ENaC$ _a and $\alpha ENaC$ _b. I, positive results for the probe $\alpha ENaC$ _wt, II, negative results for the probes $\alpha ENaC$ _b, and NTC (No Template Control). Delta Rn, fluorescence signal intensity.

Fig. 3. Electrophoretic separation in 2% agarose gel of DNA fragments obtained after RT-PCR of rat renal cortex RNA using oligonucleotide primers for α ENaC_wt, α ENaC_a, and α ENaC_b. Each reaction was conducted in 3 repetitions. "—": negative control, M: DNA marker.

heterogeneity in rat kidney probably includes finer regulation depending on the strain of experimental animals or conditions of their maintenance. For instance, changed balance between alternatively spliced forms αENaC-a and αENaC-b was revealed in salt-sensitive and salt-resistant Dahl rats after long-term high-salt diet [6]. In our experiment, we used adult male Wistar rats kept on a standard sodium diet. Unfortunately, the authors do not provide information on characteristics of animals and conditions of their maintenance [4]. Apart from species- and strain-specific features, genetic heterogeneity is affected by pathogenesis of hypertension, stress, gender, age [1,7,10]. Therefore, analysis of factors affecting the balance between de-

letional forms (a and b) of $\alpha ENaC$ gene seems quite relevant for better understanding of the regulatory mechanisms underlying genotypic diversity of mRNA caused by 3'-end deletion of $\alpha ENaC$ DNA.

Thus, no alternatively spliced deletional forms (a and b) of *aENaC* mRNA were detected in renal cortex of male Wistar rats using RT-PCR and real-time PCR.

This work was supported by Russian Foundation for Basic Research (grant No. 08-04-00658) and Leading Scientific Schools Program (NSh-1647.2008.4).

REFERENCES

- 1. K. Banasikowska, M. Post, and E. Cutz, et. al., Am. J. Physiol. Lung Cell. Mol. Physiol., 287, No. 3, L608-L615 (2004).
- S. Chu, C. A. Cockrell, and T. J. Ferro, *Biochem. Biophys. Res. Commun.*, 303, No. 4, 1159-1168 (2003).
- H. Garty and L.G. Palmer, *Physiol. Rev.*, 77, No. 2, 359-396 (1997).
- X. J. Li, R. H. Xu, W. B. Guggino, and S. H. Snyder, *Mol. Pharmacol.*, 47, No. 6, 1133-1140 (1995).
- G. Otulakowski, T. Freywald, Y. Wen, and H. O'Brodovich, *Am. J. Physiol. Lung Cell. Mol. Physiol.*, 281, No. 5, L1219-L1231 (2001).
- 6. M. F. Shehata, Int. Arch. Med., 2, No. 1, 5 (2009)
- 7. M. F. Shehata, Int. Arch. Med., 2, No. 1, 28 (2009).
- 8. C. P. Thomas, N. A. Doggett, R. Fisher, and J. B. Stokes, *J. Biol. Chem.*, **271**, No. 42, 26,062-26,066 (1996).
- C. P. Thomas, S. Auerbach, J. B. Stokes, and K. A. Volk, Am. J. Physiol., 274, No. 5, Pt. 1, C1312-C1323 (1998).
- H. Xu and S. Chu, Am. J. Physiol. Lung Cell. Mol. Physiol., 293, No. 6, L1454-L1462 (2007).